ORNL/TM-2020/1760

Considerations for using Privacy
Preserving Machine Learning

Techniques for Safeguards

Approved for public release.
Distribution is unlimited.

Nathan Martindale
Scott L. Stewart
Mark Adams

Greg Westphal

December 1, 2020

OAK RIDGE NATIONAL LABORATORY

MANAGED BY UT-BATTELLE FOR THE US DEPARTMENT OF ENERGY

DOCUMENT AVAILABILITY
Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website osti.gov

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website classic.ntis.gov

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website osti.gov/contact

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees,
makes any warranty, express or implied, or assumes any legal lia-
bility or responsibility for the accuracy, completeness, or usefulness
of any information, apparatus, product, or process disclosed, or rep-
resents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not nec-
essarily constitute or imply its endorsement, recommendation, or fa-
voring by the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not necessarily
state or reflect those of the United States Government or any agency
thereof.

https://osti.gov/
mailto:info@ntis.gov
https://classic.ntis.gov/
mailto:reports@osti.gov
https://osti.gov/contact

ORNL/TM-2020/1760

Nuclear Nonproliferation Division

CONSIDERATIONS FOR USING PRIVACY
PRESERVING MACHINE LEARNING
TECHNIQUES FOR SAFEGUARDS

Nathan Martindale
Scott L. Stewart
Mark Adams
Greg Westphal

Date Published: December 1, 2020

Prepared by
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, TN 37831-6283
managed by
UT-Battelle, LLC
for the
US DEPARTMENT OF ENERGY
under contract DE-AC05-000R22725

CONTENTS

ACIONYMIS o v o e e e e e e e e e e vi
1. Executive Summary e e e e e 1
2. Introduction e e 2
3. Background e e e e 3
3.1 Homomorphic Encryption 3
3.2 Secure Multiparty Computationt e e e 4
3.3 Zero-Knowledge Proofs 7
34 Model Security e e e e 7
3.5 Secure Enclaves 8
4. Common Use Cases o i it e e e e 9
4.1 Outsourcing Computation with Homomorphic Encryption 9
4.2 Using Homomorphic Encryption with Multiple Data Providers 10
4.3 Serving Trained Models with Secure Multiparty Computation. 11
4.4 Online Training with Secure Multiparty Computation 12
4.5 Federated Learning e 14
4.6 Secure Enclave Model Training L 16
5. Additional Considerations e e e e e e e 18
5.1 Algorithm Security e 18
5.2 Framework Maturity e e e 20

iii

O 00 N DN B~ W~

14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33

LIST OF FIGURES

Additive secret sharing addition example. L.
Outsourcing computationwithHE. 0 oo
Client encrypts data with public key and sends to server.
Server computes model output over encrypted input.
Server sends encrypted output to client for decryption with private key.
Multiple private data providers with homomorphic encryption.
Client shares public key for encryption with data providers and the server.
Data providers encrypt local data and sendtoserver.
Server computes model output over encrypted input and sends encrypted output to client for

decryption with private key.
Serving a trained model with SMPC. L L
Model owner secret shares the model with the servers.
Client (data owner) secret shares the data with the servers.
The servers compute the model over the data and the client receives reconstructed output

shares. oL e
Training a model online with SMPC.
Data providers secret share their data with the servers.
Private model trains over private data. Lo
Federated learning. e e
Global model owner shares model with all devices/dataowners.
Devices calculate model update from localdata.
Devices send model updates to secure aggregator.
Secure aggregator averages model updates and sends to global model owner.
Global model owner updates model. L L o
Training inside a secure enclave.
Clients encrypt data with different symmetric keys and send key and encrypted data to secure

enclave. e e
Enclave decrypts private data and trains model overit..
Enclave encrypts trained model with new symmetrickey.
Once model receipt is acknowledged by all clients, the enclave releases the key.
One party secret shares their data with two other parties.
All parties follow protocol to compute aresult.
Parties 2 and 3 collude, combining their input data shares.
Original data is inferred, visualized by the dotted segment.
A malicious adversary deviates from the protocol, highlighted inred.
A malicious adversary deviates from the protocol, highlightedinred.

v

17

LIST OF TABLES

1 Garbled table example fora XOR gate.

FHE
HE
TIAEA
LHE
PPML
RLWE
SHE
SMPC
ZKP

ACRONYMS

fully homomorphic encryption
homomorphic encryption
International Atomic Energy Agency
leveled homomorphic encryption
privacy-preserving machine learning
ring learning with errors

somewhat homomorphic encryption
secure multiparty computation
zero-knowledge proof

Vi

1. EXECUTIVE SUMMARY

In international nuclear safeguards, the International Atomic Energy Agency (IAEA) is tasked with inspect-
ing and verifying nuclear facilities and their activities. Data analytics and machine learning to support
inspections require large amounts of data that nuclear facility operators may consider proprietary or sensi-
tive, so the IAEA may not have full access. Allowing computation over private data without compromising
its security therefore has value for safeguards inspections and analysis.

Privacy-preserving machine learning (PPML) consists of security-focused techniques that allow data ana-
lytics and machine learning algorithms to run on sensitive data without revealing it. This includes ideas like
homomorphic encryption (HE), secure multiparty computation (SMPC), and secure enclaves. HE allows
algorithms and mathematical operations to be conducted directly on the encrypted data instead of first de-
crypting it. With SMPC, multiple entities collaboratively compute over distributed data such that no party is
able to directly view any others’ original data. Secure enclaves allow computation to take place in a separate
and heavily blocked-off section of a CPU.

Techniques like these allow for several potential use cases in which the security of data is essential. With
SMPC, machine learning models can be trained over the input data from multiple entities, resulting in a
model that all users can benefit from without leaking the input data from any particular entity. With SMPC
or a zero-knowledge proof (ZKP), an algorithm returning some single answer or truth value can be run
on someone else’s data without ever needing to see that data, potentially allowing for verification or proof
of some underlying question. HE can allow for outsourcing computation on data to a hostile or untrusted
environment.

Although most of the research in this field resides within the health and financial domains, tools from
PPML may have similar applications in nuclear safeguards. Allowing the IAEA to compute over proprietary
information, such as process models and raw sensor data using PPML techniques, provides the baseline for
running complex analytics without needing direct unencrypted access to the underlying data, maintaining
its privacy.

Important limitations to consider for these techniques include the efficiency and level of security required.
The security of HE and SMPC come at the cost of speed—the significant amount of overhead means that
algorithms implemented in these protocols and encryption schemes are slower than when run on plaintext.
Additionally, several important parameters determine what techniques or protocols are used based on the
security requirements. SMPC protocols may need to be selected for resistance against a party that attempts
to deviate from the protocol to distort the result or gain access to additional information, and a protocol
secure against these attacks may further increase the overhead of the algorithm.

2. INTRODUCTION

In recent years, the International Atomic Energy Agency (IAEA) has shifted toward information-driven
inspections [!, 2] for supporting its role in safeguards. The IAEA’s long-term research and development
plan emphasizes better usage and security of data via points 8 and 9 [3]. The ability to utilize sensitive
information from nuclear facility operators in analytics for verification without needing direct access to the
raw unencrypted data would support these objectives.

PPML is a field of study about the protection of data used either in training a machine-learning model or
that is used to make a secure inference with a trained machine learning model. Data privacy has become
increasingly important, and this capability has applications in many domains, including the medical field
[4], where data might be protected under HIPAA, or the financial field [5], where data may be considered
business secrets. Moreover, this has potential in nuclear safeguards, where facility operator data may be
highly sensitive but simultaneously valuable to IAEA inspections. Several techniques support maintaining
model and data privacy, and these can broadly be categorized into the areas of homomorphic encryption
(HE), secure multiparty computation (SMPC), and secure enclaves.

Homomorphic encryption refers to encryption schemes that can apply certain operations to ciphertexts that,
once decrypted, yield the same results as if those operations had been applied to the plaintext messages
[6]. For example, encrypting two numbers, 2 and 3, and adding the ciphertexts should result in 5 when
decrypted. The base operations usually discussed under HE are addition and multiplication. Many of the
operations involved in machine learning (ML) algorithms such as neural networks are either made up of or
can be sufficiently approximated with only addition and multiplication. A simple example of how this could
be used involves two parties: (1) a server wishing to keep a neural network model private and (2) one or more
clients wishing to use this model without revealing their data or predictions to anyone else. This is achieved
by encrypting both the model parameters as well as the data with an HE scheme. The model operations are
then carried out solely on the respective ciphertexts, and the resulting prediction is decryptable by the party
with the encrypted data. This process was demonstrated with CryptoNets [7].

Secure multiparty computation refers to protocols that allow parties to evaluate a publicly known function
on each other’s private data without revealing that data. The classic example of this in the original propo-
sition for SMPC is the “millionaire’s problem.” In this scenario, two millionaires wish to determine who is
richer without revealing how much money they have [5]. Two core techniques generally used to resolve this
problem: garbled circuits and secret sharing. Garbled circuits, which are used for secure two party com-
putation and were initially proposed by Yao [Y], encrypts a Boolean circuit and sends it to another party to
determine the output with similarly encrypted inputs from both parties. In additive secret sharing, generally
involving three or more parties, a number is split into a “share” for each party so that the sum of all of the
shares equals the original number, but no individual party has enough information to reconstruct it. Two
other works look at the application of SMPC techniques in the nuclear safeguards space [10, 11].

Secure enclaves refer to special hardware that provides protected or isolated regions of memory and com-
putation that other programs—and even the operating system—do not have access to [!2]. These can be
used to set up trusted execution environments or allow for certain security guarantees even on compromised
hosts. Protocols designed for these enclaves can run PPML algorithms such that data uploaded by different
parties is encrypted, and cannot be seen outside of the enclave.

3. BACKGROUND
3.1 HOMOMORPHIC ENCRYPTION

Distinguishing the different levels of homomorphic encryption is important. Although schemes that are
partially homomorphic have existed for a long time, supporting either addition or multiplication, the first
fully homomorphic encryption (FHE) scheme, supporting arbitrary depth, or arbitrarily many multiplication
and addition operations was proposed by Gentry [13]. HE schemes introduce random noise into the result
of each operation, and when chained in a long enough series of operations, can produce an incorrect answer.
Gentry’s solution involved “bootstrapping,” which is a technique to reset the noise level. Although this
operation is expensive, the noise management allows arithmetic circuits of arbitrary depth. In practice,
less computationally intensive approaches are used more often. A leveled homomorphic encryption (LHE)
scheme, such as used in CryptoNets [7], allows arithmetic circuits up to an arbitrary specified depth or level,
where the level must be known beforehand. This level is generally based on the number of multiplications
needed because that is the more expensive operation. Another approach is to use a somewhat homomorphic
encryption (SHE) scheme, where only some subset of possible arithmetic circuits are feasible. This is used,
for example, in the SPDZ protcol defined in [14], referencing the BV SHE scheme [15], allowing circuits
with many additions and a single multiplication operation.

One example of how some HE schemes work are those based on polynomial rings. Encryption is a mapping
from R; — R, X R, where R, is the polynomial ring encoding of the message, meaning the message integer
is encoded into the coefficients of a large polynomial, and the cipher text space is the Cartesian product of
R, polynomial rings. Notably, the cipher text is much larger than the original message. Because a cipher
text is a vector of two ring polynomials, ¢ = (¢, ¢2), addition and multiplication operations between cipher
texts are carried out based on these cipher text polynomial rings. This example shows addition [6]:

A1+ ¢ = ([enn + carlg [er2 + €22]g)

Note, HE is generally asymmetric, with a separate public key for encryption and private key for decryption.
The security of schemes using this is based on the ring learning with errors (RLWE) problem [6, 16].

Because it supports addition and multiplication, an FHE scheme can compute arbitrary polynomials. How-
ever, HE schemes can also compute Boolean circuits by using a binary message space, where addition is
equivalent to a logical XOR gate and multiplication is equivalent to a logical AND gate [0].

Although many works in this space tend to use a combination of HE and secure multiparty computation, a
few solely utilize HE. CryptoNets [7], as discussed before, is a framework for running trained networks on
data encrypted with an HE scheme. Specifically, CryptoNets rely on an LHE scheme called YASHE [17].
This framework assumes a model that was trained offline and unencrypted. Training an encrypted network
is possible, but it is at least an order of magnitude slower. Even the encrypted prediction process alone
is expensive and time-consuming. A single application of the network took 250 seconds. However, their
approach allows batching inputs, and in their evaluation on MNIST it was capable of making approximately
59,000 predictions per hour. This approach was improved in a recent work with low latency, or LoLa,
CryptoNets [18]. LoLa Cryptonets achieve a 10-fold speed increase through encoding networks on a per-
layer basis rather than a per-node basis. Each layer then can potentially use a different representation more
suited to the computations carried out in that layer. Higher overall efficiency is then achieved by switching
between representations throughout the network layers.

Other ML algorithms besides neural networks have been implemented via HE. Confidential versions of
two binary classifiers, linear means and Fisher’s linear discriminant were implemented in [19], as well as a
protocol to run them.

Naive Bayes, decision trees, and AdaBoost ensembles are implemented with HE in [20]. They design a
set of composable building blocks for the algorithms, such as comparison and argmax, which are chainable
through allowing conversion between encryption schemes. They use three different additively homomorphic
schemes, meaning they are only capable of addition operations. These are the Paillier cryptosystem [21],
the quadratic residuosity cryptosystem [22], and a leveled homomorphic encryption scheme based on the
HELib implementation. As with the previous HE works mentioned above, an emphasis is placed on privacy-
preserving classification, or keeping both input and output prediction data secret.

3.1.1 LIMITATIONS

Homomorphic encryption has several noteworthy limitations. First is that the size of the allowable message
is limited by the message space, which depends on the encryption scheme [6]. This means that for an integer
message, that integer may be bounded. However, a work-around is to use the Chinese remainder theorem,
which can either allow a larger integer to be represented by multiple smaller ones, or can allow multiple
“batched” values to be represented in a single cipher text, which is how CryptoNets batch prediction inputs.
Another potential issue is the expanded size of the cipher text. One example is that given an integer scheme
that uses more than 4,000 coefficients, a 1 MB set of plaintext data can take upward of 16 GB after encryption
[6], although this will of course depend on the encryption scheme used. One of the most prevalent issues
in relation to using HE for ML is the much greater computational cost. A simple multiplication operation
on cipher texts can take significantly longer than if it were carried out on the plaintext messages. This
contributes to the longer processing time of CryptoNets and is the reason why training with encrypted data
is harder and more compute intensive. This problem is in part solved with some of the secure multiparty
computation protocols discussed below in that they limit the depth of HE circuits needed. As already
discussed, the operations allowed, only addition and multiplication, and depth of allowed operations due
to cumulative noise are concerns. Finally, an important limitation is that these encryption schemes cannot
operate on floating point data—all floating point numbers need to be encoded into integers, such as by
scaling to some fixed precision [7].

There is an ongoing effort to standardize homomorphic encryption [23]. This standards document describes
the security of existing homomorphic encryption schemes and makes parameter recommendations.

3.2 SECURE MULTIPARTY COMPUTATION
3.2.1 GARBLED CIRCUITS AND OBLIVIOUS TRANSFER

As mentioned before, Yao’s garbled circuits [Y] provide a protocol for two parties to securely compute a
publicly known function over their privately held data. This function must be a Boolean function consisting
of AND and XOR gates [24]. One party, the “garbler,” creates a random label for each possible value, a
0 or 1, on each wire in the circuit. The truth table outputs for each gate are replaced with these values by
the garbler, and then each row output is encrypted via encryption keys made up of the two corresponding
inputs for that row. The table rows are then shuffled and sent to the other party to evaluate along with that
party’s private input (hidden by the value labels.) The evaluator then needs to obtain their private input, also
replaced with the value labels determined by the garbler, and so these labels are received from the garbler via
a technique known as “oblivious transfer” [25]. In 1-out-of-2 oblivious transfer, a sender offers two hidden
messages to a receiver, the receiver picks and encrypts a number representing which message they want
to read, and passes this back to the sender. The sender creates two keys based on the encrypted selection,
and encrypts the messages with these keys. The sender sends the encrypted messages, and the receiver’s
decryption only produces a correct value for the message they selected. The result is that the receiver cannot
see the value of the message he did not select, and the sender cannot see which value the receiver selected.
A more in-depth explanation and proof of security of garbled circuits can be found in [26].

Input 1 | Input 2 | Output Encrypted Output
Oabc | Olmn | Oxyz | ENC,pe(ENCimn(Xyz))
0 abc 1 qrs 1 jklI ENCapc(ENCqrs(jk1))
1 0 lmn 1 jklI ENC.1:(ENCimn(jK1))
1 1 qrs 0xyz | ENC.i.(ENCqrs(Xyz))

Table 1. Garbled table example for a XOR gate.

To give a more concrete visualization, take the following example along with Table 1. Two parties, Alice
and Bob, want to evaluate a Boolean circuit containing a XOR gate. We list the procedure in the following

steps:

1.

Alice, the garbler, generates different sets of random labels to represent the possible values on each
of the three wires: the two inputs and the output. In the table, the labels Alice generated for the first
input are abc for 0 and for 1, for the second input Imn for 0 and qrs for 1, and for the output xyz
for 0 and jkl for 1. These labels and the values associated with them are known only to the garbler,
Alice.

Each of the output labels are doubly encrypted by Alice, using that row’s two input labels as the keys
(shown in the Encrypted Output column of Table 1).

. Alice shuffles the rows of this encrypted column, and only this column (now known as the garbled

table) is sent to Bob, the evaluator.

. For this example, assume that the respective private data is 0 for Alice and 1 for Bob. Bob, as the

evaluator, must determine the gate output, and so needs keys or labels associated with both his and
Alice’s data. Alice sends him the label for her data, abc, and Bob does not know if this represents a 1
ora0.

Bob then needs the label for his own data, which he receives from Alice via oblivious transfer—Bob
sees qrs, but he does not know that the other label is Imn, and Alice does not know which label he
received.

Bob tests the two input keys (abc, qrs) against the encrypted table until he successfully decrypts an
output label, jkl. As before, Bob does not know whether this label represents a 0 or 1.

A Boolean circuit in a nontrivial application presumably contains more than a single XOR gate, so
this output label and any further inputs needed from either party are processed similarly through all
other gates in the circuit (which Alice would have similarly garbled, using output labels of a previous
gate as input labels for the next where needed,) repeating steps 1-6, until a final circuit output label is
obtained by Bob.

. This final output label is sent to Alice who knows the associated value, which is finally communicated

back to Bob. Only this final output can be known by either party as Alice never sees which interme-
diate output labels are reached, and Bob does not know what the labels represent and cannot decrypt
any remaining rows of the garbled tables (as he does not know the other possible labels.)

3.2.2 SECRET SHARING

Secret sharing is a method of splitting up a piece of data into “secret shares,” such that recombining them
in some way reconstructs the original piece of data. Secret shares are distributed among different parties,
and no individual party should be capable of inferring information about the original data or the other shares

without the cooperation of all parties. One example of this frequently used in SMPC protocols is additive
secret sharing [24, 27]. In additive secret sharing, a number is split into random numbers in an integer
ring such that the sum of those numbers modulo the ring is equivalent to the number. Some mathematical
operations can be run on these distributed shares, such as addition and multiplication.

5<:: z+m=3\‘
7 | E+3:9/

12

Figure 1. Additive secret sharing addition example.

A simplified example of running a mathematical operation (addition) on two pieces of data that are secret
shared is shown in Figure 1. Note, secret sharing generally requires three parties to be secure, although two
party variants have been used [24].

3.2.3 PROTOCOLS

Over the past few years, the number of secure multiparty computation protocols specifically for supporting
ML and deep learning has experienced explosive growth. Many of these protocols are hybrid protocols,
some using HE for certain operations and switching back and forth between using garbled circuits and
secret sharing.

One of the first major SMPC protocols was SPDZ [14]. A major drawback of HE schemes is the computa-
tional overhead involved, and this work proposed an efficient way of using SHE for multiparty computation.
This is done by splitting computation into an online and offline phase, with the offline phase used solely to
generate supporting material for online multiplication operations. This material is made up of randomized
“Beaver triplets” [28], a collection of three numbers defined by <a>, , <c> such that ¢ = ab, where the
syntax <a> represents a collection of secret shares that recombine to create a. These numbers are encrypted
with the BV SHE scheme, and because only a single multiplication step is needed, the overall depth is low
and thus quick to run. All values are additively secret shared in this protocol, as is the private decryption
key, meaning no individual can decrypt the data without the collaboration of all parties.

SecureML [27] is a protcol similar to SPDZ, but one of the first more oriented toward ML. It still relies on
an offline phase to generate triplets for online multiplication, and because it is only intended for two party
computation, garbled circuits are used for part of the algorithms. Notably they switch between different
mechanisms: arithmetic, Boolean, and Yao. The work proposes a new activation function that is a cheaper
approximation of a logistic and is much more efficient to implement than previous approximations, needing
only small garbled circuits. It uses oblivious transfer, but minimizes the amount of overall communications
needed. Similarly, they implement a cheaper softmax approximation.

The ABY [29] protocol is an acronym for arithmetic, Boolean, and Yao (garbled circuits), as their frame-
work efficiently switches between these three different protocols, similarly to SecureML, but for three-party
computation. Neither ABY nor DeepSecure [30] use HE, with DeepSecure relying exclusively on garbled
circuits. DeepSecure specifically optimizes some of the garbled circuit steps needed by doing some of the
work during preprocessing.

Chameleon [24] is an extension of ABY that switches between additive secret sharing and garbled circuits to
support both linear and nonlinear functions. Gazelle [3 |] implements a protocol that switches between using
HE encryption schemes and garbled circuits. SecureNN [32], one of the most recent protocols, claims the

highest efficiency of the SMPC protocols for neural networks, achieved by eliminating the need for garbled
circuits and oblivious transfer, translation protocols, and reducing the overall amount of communication
overhead.

3.3 ZERO-KNOWLEDGE PROOFS

Zero-knowledge proofs are an important concept explicitly tied into many secure multiparty computation
protocols. At its core, a zero-knowledge proof allows for one party (the prover) to assert some statement
such that some other party (the verifier) is convinced of the assertion’s truth without needing any information
other than the statement itself revealed [33, 34, 35].

A zero-knowledge proof has three behaviors or properties: (1) for true statements, an honest verifier will be
convinced of its truth (completeness); (2) for false statements, no deviation from the protocol by the prover
will convince the verifier that it is true within some tolerance probability (soundness); and finally, the verifier
does not learn anything beyond whether the statement is true or false (zero-knowledge).

Zero-knowledge proofs can be considered a subset or special case of protocols [34]. More importantly,
they can be used to create a malicious-secure SMPC protocol [33]. SPDZ is an example of this, implement-
ing zero-knowledge proofs to ensure that the ciphertexts used in the beaver triplets are correct and can be
decrypted [14]. Other, older works have even established the ability to turn arbitrary semihonest secure pro-
tocols into malicious-secure protocols with zero-knowledge proofs by requiring a proof on every message

[36, 33].

3.4 MODEL SECURITY

Although techniques such as homomorphic encryption and secure multiparty computation help protect the
processes of training and inference themselves, there are various kinds of attacks that can be used against
trained ML models, even if the only access an adversary has is an inference API end point to a trained model
[37]. The three main types of attacks are causitive, evasion, and exploratory. Causitive attacks pertain to
poisoning the training process, such as the data. Evasion attacks try to find inputs that cause an incorrect
output from a trained model. Finally, exploratory attacks try to gather data about trained models. PPML
tries to keep data and trained models private, and so exploratory attacks are the most relevant type to explain.

Subcategories of exploratory attacks include model inversion, model extraction, and membership inference
attacks. Model inversion attacks use outputs to infer broader features or characterizations about the inputs
that were used during training. Membership inference attacks [38] can be used to distinguish whether a
particular input was used to train a model or not. These were demonstrated even in a “black box” setting,
where an adversary only has access to prediction outputs of the model. With only this API-like access, a
generic technique capable of determining training set membership was created [38]. Model extraction is
an attack that attempts to recover or replicate the parameters and weights of a private trained model [39].
Many attacks in this area are based on ML as a service systems that provide more information beyond just
the output prediction, such as confidence vectors, but purely black box attacks against SVM’s trained and
protected with SMPC protocols have been demonstrated [37].

In PPML, one type of countermeasure in particular has received a lot of attention: differential privacy [40].
Differential privacy is about maintaining high statistical accuracy across a set of input data and not revealing
information about the individuals within that data. This is directly to address model membership inference—
with high differential privacy, it should not be feasible to determine if a model trained with a given input
or not. This has been implemented into deep learning in practice through a differentially private stochastic
gradient descent algorithm (DP-SGD) [41, 42]. DP-SGD is a loss function, an altered version of SGD such
that after the gradient is computed, a small amount of Gaussian noise is added. This noise is intended to

prevent the network from “memorizing” any individual training instances it sees. [42] demonstrates this not
only provides protection against a black box adversary, but it also protects against adversaries with direct
access to the model parameters.

Note, however, that even with differential privacy employed, it is still possible for exploratory attacks to
reveal and leak information about a model’s training data [43]. Whether the type of data that can be leaked
from these attacks is a threat or not is problem specific and a consideration to be taken into account based
on the configuration of the threat model. A malicious server hosting a homomorphically encrypted model
cannot gain information about that model, but a malicious entity who has been given access to the model
endpoint for use may be able to gain information about the original training data.

3.5 SECURE ENCLAVES

Secure enclaves are a partially hardware-based approach to allowing private computation in untrusted or
unsecure environments. An enclave is a trusted execution environment where both memory and computation
are isolated from the rest of the system, including privileged processes such as the operating system. This
is achieved by encrypting all memory that the enclave uses. Another important component is hardware and
software verification, which is done via a process called remote attestation. Remote attestation is a way of
creating a certificate, signature, or hash of the hardware and code that is running within the enclave, which
a client can use to verify both the enclave and its contents [|2]. There are several existing implementations
of secure enclaves, namely Intel SGX (Software Guard eXtensions), ARM TrustZone, and Sanctum [44].

Despite the encryption of enclave memory, multiple side and controlled-channel attacks are known to work
against Intel’s SGX [45], including page faults, cache timing, address bus monitoring, and processor mon-
itoring. Spectre in particular was demonstrated to work against SGX [46]. Data obliviousness is one ideal
property of algorithms discussed in [12] that can partially mitigate data leakage. The resulting sequence of
memory and disk accesses from a data oblivious algorithm does not depend on the data that the algorithm is
acting on. Although data obliviousness helps mitigate some side-channel attacks regarding memory traces,
it does not necessarily solve timing or related attacks [12].

Using a secure enclave can be significantly faster than either homomorphic encryption or secure multiparty
computation, but it still has its own set of performance penalties and overhead [47], caused for example by
a frequent need to continually encrypt and decrypt memory. Various works have proposed partial solutions
to this for implementing efficient ML algorithms. The Slalom framework [47] allows for portions of neural
network operations to be outsourced to a faster untrusted processor, such as a GPU. Myelin [48] uses small
modular libraries that fit entirely in enclave memory. Chiron [49] allows parallel computation between
multiple enclaves.

4. COMMON USE CASES
4.1 OUTSOURCING COMPUTATION WITH HOMOMORPHIC ENCRYPTION

1. Encrypted
Client bata) (2 Eervert d
. Encrypte:
3. Encrypted____| computation)

Results

Figure 2. Outsourcing computation with HE.

The simplest use case for HE is to support outsourcing computation over private data, as described in [6].
For example, a model owner wants to keep a neural network model private, and a client would like to use
the neural network model without revealing their data or analysis results to anyone else. Using HE, the
client could ensure their data is protected by encrypting it before sending it to the model owner. The model
owner would then operate on the encrypted data using their model to generate an encrypted result. The
encrypted result would then be sent back to the client for decryption and review. In this scenario, the client’s
information is protected because they are the only one with the key to encrypt or decrypt the data and results.
The parameters of the model owner’s model would also be protected because they could keep the model on
servers that they own. Microsoft Research demonstrated this process with CryptoNets [7].

We diagram this scenario in Figure 2. There are two parties, a client (blue) and a server (purple) to which the
computation is outsourced. The client has some set of private data, and the server has a model or algorithm
to run. This scenario could fit multiple situations, where either the client uploads that model or algorithm,
or if some other party or the server itself offers the private algorithm/model as a type of service (MLaaS).
The client wants both input and output to remain private.

Y4

——————

- 1 Server

Client

Figure 3. Client encrypts data with public key and sends to server.

The client first encrypts their local data and uploads it to the server, as shown in Figure 3. Most HE schemes
are asymmetric, so the client generates a public/private key pair and encrypts all local data with the public
key. The client then sends both the encrypted data as well as the public encryption key to the server.

In the next step, shown in Figure 4, the server processes this data by encrypting any algorithm or model
parameters/weights as needed and then running the encrypted data through the now-encrypted model. As
all operations are run on the ciphertexts, the output results are likewise encrypted.

Finally, in Figure 5, the server sends the encrypted output back to the client. The client can then use their
private key to decrypt this data to see the final plaintext results. Throughout this use case, the server has
never seen any plaintext data, and the client would not directly observe any model parameters.

Input data

Output data

Private/public key pair

e)
g
%-®
®

o e I

Algorithm/ML model

Server Client

Figure 5. Server sends encrypted output to client for decryption with private key.

Client Server
(1. Distribute public €—* E”‘”ftmeq— (3. Enerypted
key) results computation)

yypted data

Data Provider Data Provider Data Provider

Figure 6. Multiple private data providers with homomorphic encryption.

4.2 USING HOMOMORPHIC ENCRYPTION WITH MULTIPLE DATA PROVIDERS

Our second use case is based on discussions in [0, 19], which expands on the previous example by allowing
for multiple data providers to contribute private data. There are three different entities: a client who wishes
to collect output for a set of data providers, a server containing a model or algorithm, and a collection of
data providers. A potential application of this setup would be a research institute that wants to train a model
based on the private data from many hospitals, represented by the data providers.

In the first step, shown in Figure 7, the client generates a public/private key pair and publishes (or directly
sends) the public encryption key to the data providers and the server. This allows the data providers to each
homomorphically encrypt their data using the same key without the ability to decrypt anything.

Once the data providers receive the public key from the client, they encrypt their data and send it to the
server (Figure 8). The server also encrypts any necessary model or algorithm parameters with the same
public key.

The server runs the encrypted model over the aggregated encrypted inputs, shown in Figure 9, and the
output is still homomorphically encrypted. The server then sends the results to the client, who decrypts
them with their private decryption key. Throughout this use case, neither the server nor any data provider
views anything in plaintext beyond their original privately held data. As noted in [6], there may need to be a

10

Client

Y4
ZEA

.

“““““

““““

Data Providers

Data Providers

Model Owner

Servers

1. Secret-share, "
model = (3. Computation over

shares)

_‘_2. Secref-share

Server

Figure 7. Client shares public key for encryption with data providers and the server.

L@

Server

Figure 8. Data providers encrypt local data and send to server.

Client

Figure 9. Server computes model output over encrypted input and sends encrypted output to client
for decryption with private key.

contractual assumption between the client and server that the server does not send any of the encrypted data
providers’ data to the client, as the client is capable of decrypting it with the private key.

4.3 SERVING TRAINED MODELS WITH SECURE MULTIPARTY COMPUTATION

data

4. Result
shares

Client

Figure 10. Serving a trained model with SMPC.

The next example uses SMPC in a similar manner to |
previous HE outsourcing use case but with a SMPC protocol instead. Three different entities are involved:
a model owner who is offering their model as a service but wishes to keep it private, a client with private

11

]. This example follows the same basic flow as the

data wishing to run the model on that data, and a collection of servers to use for the computation. For the
purposes of this example, the model has already been trained offline.

Model Owner

&
RN
-

Servers

Figure 11. Model owner secret shares the model with the servers.

In the first step, shown in Figure 11, the model owner secret shares their model, dividing it into shares and
sending one to each server. This keeps the model private because neither the client nor any individual server
will be able to infer the original model without all of the shares.

@

RO
@

Servers

Client

Figure 12. Client (data owner) secret shares the data with the servers.

In the next step, Figure 12, the client secret shares its private data with the servers.

Next, in Figure 13, the servers run the distributed model over the distributed shares, and the results remain
secret shared across all of the servers. The client receives the result shares and reconstructs them to obtain
the plaintext results. Throughout this use case, the client never accesses the model, and the model owner
never accesses the input or output data.

Note, depending on the security model of the protocol, these servers are assumed to be noncolluding. For
instance, the servers could be distributed among the model owner and client. Different protocols support
different configurations, as some are capable of two party computation and others require three or more.

4.4 ONLINE TRAINING WITH SECURE MULTIPARTY COMPUTATION

The next example is drawn from [32], presenting a scenario building off of the previous one. In it, the model
is trained online and can be trained on private data from multiple different data providers. There are three
entities in a similar setup as the second HE example in Section 4.2: a collection of data providers who wish
to contribute data but have it remain private, a collection of servers on which to run the computation, and a
client who wishes to use the trained model.

12

<« D]
T

%
=

=
&
7

%{—
v

E@/'

-> &8

Client

<« D]
eCS
(D]

%

Servers

Figure 13. The servers compute the model over the data and the client receives reconstructed output
shares.

Data Provider

\ (2. Train on shares) ‘_3 Secret-share

data
Data Provider ~—1- Secrel-share Servers
training data > Client

(4. Computation over 5. Result 3

/ shares) shares

Figure 14. Training a model online with SMPC.

Data Provider

—=

I —ZQ ‘
—4 /’4 @
| P

Figure 15. Data providers secret share their data with the servers.

Initially, all of the computation servers begin with a secret-shared untrained model. Each data provider
secret shares their private data with the servers, shown in Figure 15. Importantly, no data provider is able to
see any other party’s data.

In the next step (Figure 16), the servers iteratively train their model shares over their data shares which
results in a trained model still secret-shared across the servers. Note, in both of the presented SMPC ex-
amples, the server computation stage shown in these figures is a heavily simplified version of the actual
process. Most operations involved in SMPC require frequent communication between the different servers,
and this communication overhead (and sometimes the offline phases required by the various SMPC proto-

13

E?} & @
Py || 30

Servers

¥

> @

-«
*
<

%

Figure 16. Private model trains over private data.

cols) contributes to the significantly greater run time compared to training the same model offline [32].

From this point, the trained model can either be left secret-shared and offered as a service to clients, or the
model can be reconstructed and published or returned to the data providers. In the former case, a client
could make secure inferences by secret-sharing their input data with the servers and recombining the output,
following Figures 12 and 13.

4.5 FEDERATED LEARNING

Global Model
owner
(6. Update global
model)
2 C?;rt:ng:::r\ocal 1. Global model 5. Averaged updates
data)
Data Owner Secure
(2. Compute on local Aggregator
data) (4. Average updates)

3. Model updates

Data Owner
(2. Compute on local
data)

Figure 17. Federated learning.

Federated learning [50, 51, 52] is a technique for maintaining data privacy by keeping all data local to its
owner and distributing the model training among many data owners. The local training updates are then
aggregated or compiled into a final update that is applied to the global model. Similar to the HE and SMPC
multiple data provider scenarios, this allows potentially sensitive data from multiple owners to be used while
keeping it private from both the model owner and the other data owners. Although there are different ways
to architect federated learning, this use case (as described in [51, 52]) shown in Figure 17 involves a global
model owner, the data providers, and a separate aggregator that provides an additional layer of security and
privacy between the model owner and the data providers. An applied example of this is given in [51], which
discusses a Google research project about the use of federated learning to train an Android keyboard text
prediction model. Predictive text is locally trained instead of centralizing the data from mobile devices that
could contain sensitive information.

Initially, the global model owner has an untrained model. As shown in Figure 18, the model owner sends a
copy of the model to each individual data owner or device.

In the next step, Figure 19, each data owner/device locally computes a model update (represented by the up
arrow) on their local data. For instance, this could include stochastic gradient descent (SGD) updates, or the
weight gradients calculated from running SGD on multiple batches of local data [51].

14

G

lobal Model Owner

.
by

OC

Data Owners

Figure 18. Global model owner shares model with all devices/data owners.

Y

D0 {00

Y

o 5| g0 o

Data Owners

Figure 19. Devices calculate model update from local data.

Data Owners

Lo Twm
=

Figure 20. Devices send model updates to secure aggregator.

As the data owners calculate local weight updates, they are sent to a secure aggregator (Figure 20). SMPC
protocols can be employed on these updates to ensure the aggregator cannot read them until a large number
of data owners have participated. This is to prevent the global model owner from getting updates from only

a few data owners and inferring anything about the original data.

RN

- {r

Secure Aggregator

Figure 21. Secure aggregator averages model updates and sends to global model owner.

Next, in Figure 21, the secure aggregator averages all of the individual weight updates obtained from the

data owners.

L

Global Model Owner

15

0
o)

Global Model Owner

Figure 22. Global model owner updates model.

Finally, once the global model owner receives the averaged weight update, they apply it to the global model
as shown in Figure 22. This process can be repeated for multiple epochs to iteratively train the public
model. Data owner privacy is maintained because their individual data never leaves their local devices.
Note, federated learning is demonstrably susceptible to attacks via a GAN approach [43], and it is currently
infeasible for record-level differential privacy alone to protect against this type of attack.

4.6 SECURE ENCLAVE MODEL TRAINING

Enclave
(2. Computation on
decrypted data)

1
3. Encrypted model

1. Encrypted data 4. Decryption key
and keys i

Client Client Client
(5. Decrypt model) (5. Decrypt model) (5. Decrypt model)

Figure 23. Training inside a secure enclave.

The last use case is based on a secure enclave, potentially hosted by a cloud vendor, and is discussed in
[12]. The scenario presented is similar to the SMPC online training situation, as well as the multiple data
provider HE scenario, in that private data from multiple data owners or clients can be used to train a model.
Additionally this use case guarantees fairness by ensuring that all participating clients get a copy of the final
trained model.

Lr

Enclave

Clients

Figure 24. Clients encrypt data with different symmetric keys and send key and encrypted data to
secure enclave.

In the first step (Figure 24), all clients use a symmetric encryption scheme to encrypt their local data. (Note,
this is not a HE scheme. In the example given in [12], AES-GCM is used.) The clients then send this

16

encrypted data to the enclave with the key, which the enclave needs to locally decrypt and work with the

client data.
{,}

Ll o° -

Enclave

Figure 25. Enclave decrypts private data and trains model over it.

The secure enclave initially has an untrained model, and the clients can agree upon and verify via the code
remote attestation. The enclave then uses each client key to decrypt the individual data sets and train the
model over this data, shown in Figure 25.

s

Enclave

Clients

Figure 26. Enclave encrypts trained model with new symmetric key.

Once the model has been trained, the secure enclave generates a new symmetric key and uses it to encrypt the
final model, in Figure 27. This encrypted model is then sent to each of the clients. To ensure fair availability,
the enclave waits until receipt of the encrypted model is confirmed by all clients before releasing the key.

. @)
il e e

Clients

Figure 27. Once model receipt is acknowledged by all clients, the enclave releases the key.

Finally, when all clients have confirmed receipt of the model, the enclave releases the key in Figure 27
(potentially publishing it to a public third party, again to support fair availability) to each client. The clients
then use the key to decrypt their local models. No clients ever see another clients’ data, and although
the enclave locally decrypts the data to compute over it, the enclave protects this from the environment,
defending against a potentially malicious cloud vendor attempting to steal it. As mentioned in Section 3.4,
there are still security concerns in this scenario, as with direct access to the model, white-box attacks could
be conducted in an attempt to infer original training data.

17

S. ADDITIONAL CONSIDERATIONS
5.1 ALGORITHM SECURITY

Two fundamental differences exist between techniques like HE and SMPC—the adversary the technique
is protecting against, and the basis of the security guarantees. In the former, we distinguish between a
technique that protects against parties outside of the system and a technique that protects parties inside the
system. Homomorphic encryption, similar to a conventional encryption technique like advanced encryption
standard (AES), protects data in transit or at rest from an outside eavesdropper. Without the key, anyone
who observes the encrypted data is unable to read it. Secure multiparty computation itself has no inherent
mechanism for protection from eavesdropping, but the parties themselves are unable to learn anything about
the others’ data from what they explicitly receive.

The algorithms also carry different computational hardness assumptions. The security of HE is gener-
ally based on the ring learning with errors problem, meaning that similar to RSA, (the security of which
is based on the difficulty of factoring large numbers), the amount of computational resources required to
break the algorithm is significantly higher than what is available in practice. In contrast, ZKP and SMPC
are information-theoretic secure—without some specific set of information, breaking the cryptosystem is
impossible, regardless of compute capability.

SMPC has several additional security characteristics, and protocols are generally designed to address differ-
ent security models, or to what degree of party dishonesty the protocol will protect against. These frequently
fall into either semihonest (passive) security or malicious (active) security. For both cases, we will visualize
the scenario that the security model protects against, and for simplicity, we assume only one party is secret
sharing their data with the others as shown in Figure 28.

Party 1

AR
J Q

Party 2 Party 3

Figure 28. One party secret shares their data with two other parties.

In the first case, the model assumes semihonest but curious adversaries, meaning they do not deviate from
the protocol but passively observe everything they can or collude in an attempt to collect more information
than they should have. Figure 29 shows the two semihonest adversaries highlighted in yellow. All parties
correctly compute over their data shares, following the protocol without deviation, and obtain valid result
shares.

In Figure 30, parties 2 and 3 send their result shares to party 1 to be reconstructed into a final output, but
also collude and combine the input data shares they received in an attempt to reconstruct the original data
themselves.

If the protocol does not provide passive security, Figure 31 may result, in which parties 2 and 3 are able
to infer the final missing data share (the dotted red segment) based on their combined shares. Input data
privacy cannot be guaranteed in this situation.

18

Party 1

<

Party 2 Party 3

d Q

Figure 29. All parties follow protocol to compute a result.

Party 1

<

Party 2 OQ Party 3
d Q

Figure 30. Parties 2 and 3 collude, combining their input data shares.

Party 1

<

Party 2 Party 3

N N
Figure 31. Original data is inferred, visualized by the dotted segment.

Active security, or security against malicious adversaries, is harder to achieve. This scenario assumes the
malicious adversary is willing to arbitrarily deviate from the given protocol, either to corrupt the computation
or to obtain private data. This is visualized in Figure 32 with the red computation and communication arrows
from party 2, the malicious adversary. In this situation, the adversary may intentionally compute their result
share incorrectly, corrupting the end result, or they may deviate such that the other parties inadvertently send
enough information that the malicious adversary is able to infer the missing data, shown with the dotted red
segments.

Figure 33 shows the potential result without active security. Party 1 may end up with an incorrect output,
and the malicious adversary may end up with access to the original private input data.

Although it is feasible to make any arbitrary protocol secure against malicious adversaries [30], protocols
that are malicious-secure frequently add a great deal of overhead. Another security model sometimes tar-
geted is covert security [53], which relaxes some of these constraints. In covert security, an adversary may
still arbitrarily deviate, but has an incentive to not get caught cheating. Protocols that provide covert security
need to ensure a high probability that deviation will be detected.

Additionally, another parameter generally discussed in relation to security models is the number or ratio of
parties that may be dishonest—a protocol that is malicious-secure against a dishonest majority may be much

19

Party 1

Party 2 ’ Party 3
0 =»(— Q

Figure 32. A malicious adversary deviates from the protocol, highlighted in red.

Party 1

Party 2 Party 3

Figure 33. A malicious adversary deviates from the protocol, highlighted in red.

more computationally expensive than one secure against an honest majority.

Finally, it is worth reiterating that although HE and SMPC are strong techniques for evaluating functions
over data while maintaining its security, machine learning models themselves can still be attacked via the
methods referenced in Section 3.4 to gain some level of information about the training data. Other techniques
such as differential privacy may need to be incorporated to help mitigate this risk. Notably, federated learning
does not maintain security even with differential privacy in use.

5.2 FRAMEWORK MATURITY

A final consideration is the relative maturity of existing implementations of many of these techniques. The
number of libraries and protocols has exploded in recent years, but the majority of them are intended solely
for research purposes and are unsuitable for production use. Older and more generic libraries such as HELib
and SEAL [54] are more likely to be production ready, but lack many of the higher level features for enabling
faster machine learning algorithms without implementing them from scratch.

20

REFERENCES
[1] MD Laughter, JM Whitaker, and D Lockwood. Information-driven inspections. 2010.

[2] JM Whitney, S LaMontagne, A Sunshine, D Lockwood, D Peranteau, and G Dupuy. Next generation
safeguards initiative: 2010 and beyond. Technical report, 2010.

[3] International Atomic Energy Agency. IAEA Department of Safeguards long-term R&D plan, 2012-
2023. 2013.

[4] M Barni, P Failla, R Lazzeretti, A-R Sadeghi, and T Schneider. Privacy-preserving ECG classifica-
tion with branching programs and neural networks. IEEE Transactions on Information Forensics and
Security, 6(2):452-468, 2011.

[5S] D Bogdanov, R Talviste, and J Willemson. Deploying secure multi-party computation for financial
data analysis. In International Conference on Financial Cryptography and Data Security, pages 57—
64. Springer, 2012.

[6] LIM Aslett, PM Esperanca, and CC Holmes. A review of homomorphic encryption and software tools
for encrypted statistical machine learning. arXiv preprint arXiv:1508.06574, 2015.

[7] R Gilad-Bachrach, N Dowlin, K Laine, K Lauter, M Naehrig, and J] Wernsing. Cryptonets: Applying
neural networks to encrypted data with high throughput and accuracy. In International Conference on
Machine Learning, pages 201-210, 2016.

[8] AC Yao. Protocols for secure computations. In 23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160-164. IEEE, 1982.

[9] AC-C Yao. How to generate and exchange secrets. In 27th Annual Symposium on Foundations of
Computer Science (sfcs 1986), pages 162-167. IEEE, 1986.

[10] AA Solodov, DR Farley, C Brif, and ND Pattengale. Development of novel approaches to anomaly
detection and surety for safeguards data. Technical report, Sandia National Laboratory, Albuquerque,
NM, 2019.

[11] DR Farley, MG Negus, and RN Slaybaugh. Industrial internet-of-things and data analytics for nuclear
power and safeguards. Technical report, Sandia National Laboratories , Livermore, CA, 2018.

[12] O Ohrimenko, F Schuster, C Fournet, A Mehta, S Nowozin, K Vaswani, and M Costa. Oblivious
multi-party machine learning on trusted processors. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 619-636, 2016.

[13] C Gentry and D Boneh. A Fully Homomorphic Encryption Scheme, volume 20. Stanford University,
2009.

[14] I Damgard, V Pastro, N Smart, and S Zakarias. Multiparty computation from somewhat homomorphic
encryption. In Annual Cryptology Conference, pages 643—-662. Springer, 2012.

[15] Z Brakerski and V Vaikuntanathan. Fully homomorphic encryption from ring-LWE and security for
key dependent messages. In Annual Cryptology Conference, pages 505-524. Springer, 2011.

[16] V Lyubashevsky, C Peikert, and O Regev. On ideal lattices and learning with errors over rings. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages
1-23. Springer, 2010.

21

[17] JW Bos, K Lauter, J Loftus, and M Naehrig. Improved security for a ring-based fully homomorphic
encryption scheme. In IMA International Conference on Cryptography and Coding, pages 45—64.
Springer, 2013.

[18] A Brutzkus, R Gilad-Bachrach, and O Elisha. Low latency privacy preserving inference. In Interna-
tional Conference on Machine Learning, pages 812-821, 2019.

[19] T Graepel, K Lauter, and M Naehrig. MI confidential: Machine learning on encrypted data. In
International Conference on Information Security and Cryptology, pages 1-21. Springer, 2012.

[20] R Bost, RA Popa, S Tu, and S Goldwasser. Machine learning classification over encrypted data. In
NDSS, volume 4324, page 4325, 2015.

[21] P Paillier. Public-key cryptosystems based on composite degree residuosity classes. In International
Conference on the Theory and Applications of Cryptographic Techniques, pages 223-238. Springer,
1999.

[22] S Goldwasser and S Micali. Probabilistic encryption and how to play mental poker keeping secret all
partial information. In Proceedings of the Fourteenth annual ACM Symposium on Theory of Comput-
ing, pages 365-377. ACM, 1982.

[23] M Albrecht, M Chase, H Chen, D Ding, S Goldwasser, S Gorbunov, S Halevi, J Hoffstein, K Laine,
K Lauter, S Lokam, D Micciancio, D Moody, T Morrison, A Sahai, and V Vaikuntanathan. Homomor-
phic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada,
November 2018.

[24] MS Riazi, C Weinert, O Tkachenko, EM Songhori, T Schneider, and F Koushanfar. Chameleon: A
hybrid secure computation framework for machine learning applications. In Proceedings of the 2018
on Asia Conference on Computer and Communications Security, pages 707-721. ACM, 2018.

[25] S Even, O Goldreich, and A Lempel. A randomized protocol for signing contracts. Communications
of the ACM, 28(6):637-647, 1985.

[26] Y Lindell and B Pinkas. A proof of security of Yao’s protocol for two-party computation. Journal of
Cryptology, 22(2):161-188, 2009.

[27] P Mohassel and Y Zhang. Secureml: A system for scalable privacy-preserving machine learning. In
2017 IEEE Symposium on Security and Privacy (SP), pages 19-38. IEEE, 2017.

[28] D Beaver. Efficient multiparty protocols using circuit randomization. In Annual International Cryp-
tology Conference, pages 420—432. Springer, 1991.

[29] P Mohassel and P Rindal. ABY 3:A mixed protocol framework for machine learning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, pages 35-52. ACM,
2018.

[30] BD Rouhani, MS Riazi, and F Koushanfar. Deepsecure: Scalable provably-secure deep learning. In
Proceedings of the 55th Annual Design Automation Conference, page 2. ACM.

[31] C Juvekar, V Vaikuntanathan, and A Chandrakasan. {GAZELLE}: A low latency framework for
secure neural network inference. In 27th {USENIX} Security Symposium ({USENIX} Security 18),
pages 1651-1669, 2018.

[32] S Wagh, D Gupta, and N Chandran. SecureNN: 3-party secure computation for neural network train-
ing. Proceedings on Privacy Enhancing Technologies, 1:24, 2019.

22

[33] D Evans, V Kolesnikov, and M Rosulek. A pragmatic introduction to secure multi-party computation.
Foundations and Trends® in Privacy and Security, 2(2-3), 2017.

[34] Y Ishai, E Kushilevitz, R Ostrovsky, and A Sahai. Zero-knowledge proofs from secure multiparty
computation. SIAM Journal on Computing, 39(3):1121-1152, 2009.

[35] M Petkus. Why and how zk-SNARK works. arXiv preprint arXiv:1906.07221, 2019.

[36] O Goldreich, S Micali, and A Wigderson. How to play ANY mental game. In Proceedings of the
Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages 218-229, New York,
NY, 1987. Association for Computing Machinery.

[37] RN Reith, T Schneider, and O Tkachenko. Efficiently stealing your machine learning models. In
Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society, pages 198-210. ACM,
2019.

[38] R Shokri, M Stronati, C Song, and V Shmatikov. Membership inference attacks against machine
learning models. In 2017 IEEE Symposium on Security and Privacy (SP), pages 3—18. IEEE, 2017.

[39] F Tramer, F Zhang, A Juels, MK Reiter, and T Ristenpart. Stealing machine learning models via
prediction apis. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 601-618, 2016.

[40] C Dwork. Differential privacy. Encyclopedia of Cryptography and Security, pages 338-340, 2011.

[41] HB McMahan, G Andrew, U Erlingsson, S Chien, I Mironov, N Papernot, and P Kairouz. A general ap-
proach to adding differential privacy to iterative training procedures. arXiv preprint arXiv:1812.06210,
2018.

[42] M Abadi, A Chu, I Goodfellow, HB McMahan, I Mironov, K Talwar, and L Zhang. Deep learning
with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 308-318. ACM, 2016.

[43] B Hitaj, G Ateniese, and F Perez-Cruz. Deep models under the GAN: Information leakage from
collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 603-618, 2017.

[44] V Costan, I Lebedev, and S Devadas. Sanctum: Minimal hardware extensions for strong software
isolation. In 25th {USENIX} Security Symposium ({USENIX} Security 16), pages 857-874, 2016.

[45] T Hunt, Z Zhu, Y Xu, S Peter, and E Witchel. Ryoan: A distributed sandbox for untrusted computa-
tion on secret data. In 12th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 16), pages 533-549, 2016.

[46] G Chen, S Chen, Y Xiao, Y Zhang, Z Lin, and TH Lai. Sgxpectre attacks: Stealing intel secrets from
sgx enclaves via speculative execution. arXiv preprint arXiv:1802.09085, 2018.

[47] F Tramer and D Boneh. Slalom: Fast, verifiable and private execution of neural networks in trusted
hardware. arXiv preprint arXiv:1806.03287, 2018.

[48] N Hynes, R Cheng, and D Song. Efficient deep learning on multi-source private data. arXiv preprint
arXiv:1807.06689, 2018.

[49] T Hunt, C Song, R Shokri, V Shmatikov, and E Witchel. Chiron: Privacy-preserving machine learning
as a service. arXiv preprint arXiv:1803.05961, 2018.

[50] S Truex, N Baracaldo, A Anwar, T Steinke, H Ludwig, R Zhang, and Y Zhou. A hybrid approach
to privacy-preserving federated learning. In Proceedings of the 12th ACM Workshop on Artificial
Intelligence and Security, pages 1-11. ACM, 2019.

23

[51]

[52]

[53]

[54]

A Hard, K Rao, R Mathews, S Ramaswamy, F Beaufays, S Augenstein, H Eichner, C Kiddon, and
D Ramage. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604,
2018.

K Bonawitz, V Ivanov, B Kreuter, A Marcedone, HB McMahan, S Patel, D Ramage, A Segal, and
K Seth. Practical secure aggregation for privacy-preserving machine learning. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1175-1191. ACM,
2017.

Y Aumann and Y Lindell. Security against covert adversaries: Efficient protocols for realistic adver-
saries. In Theory of Cryptography Conference, pages 137-156. Springer, 2007.

Microsoft SEAL (release 3.4). https://github.com/Microsoft/SEAL, October 2019. Microsoft
Research, Redmond, WA.

24

https://github.com/Microsoft/SEAL

	Acronyms
	Executive Summary
	Introduction
	Background
	Homomorphic Encryption
	Secure Multiparty Computation
	Zero-Knowledge Proofs
	Model Security
	Secure Enclaves

	Common Use Cases
	Outsourcing Computation with Homomorphic Encryption
	Using Homomorphic Encryption with Multiple Data Providers
	Serving Trained Models with Secure Multiparty Computation
	Online Training with Secure Multiparty Computation
	Federated Learning
	Secure Enclave Model Training

	Additional Considerations
	Algorithm Security
	Framework Maturity

